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ABSTRACT

For 30 years, near-infrared (NIR) spectroscopy has routinely been
applied to the cereal grains for the purpose of rapidly measuring con-
centrations of constituents such as protein and moisture. The research
described herein examined the ability of NIR reflectance spectroscopy on
harvested wheat to determine weather-related, quality-determining prop-
erties that occurred during plant development. Twenty commercial cultivars or
advanced breeding lines of hard red winter and hard white wheat (Triticum
aestivum L.) were grown in 10 geographical locations under prevailing
natural conditions of the U.S. Great Plains. Diffuse reflectance spectra
(1,100-2,498 nm) of ground wheat from these samples were modeled by
partial least squares one (PLS1) and multiple linear regression algorithms
for the following properties: SDS sedimentation volume, amount of time
during grain fill in which the temperature or relative humidity exceeded or was
less than a threshold level (ie., >30, >32, >35, <24°C; >80%, <40% rh).
Rainfall values associated with four pre- and post-planting stages also
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were examined heuristically by PLS2 analysis. Partial correlation analysis
was used to statistically remove the contribution of protein content from
the quantitative NIR models. PLS1 models of 9-11 factors on scatter-
corrected and (second order) derivatized spectra produced models whose
dimensionless error (RPD, ratio of standard deviation of the property in a
test set to the model standard error for that property) ranged from 2.0 to
3.3. Multiple linear regression models, involving the sum of four second-
derivative terms with coefficients, produced models of slightly higher
error compared with PLS models. For both modeling approaches, partial
correlation analysis demonstrated that model success extends beyond an
intercorrelation between property and protein content, a constituent that is
well-modeled by NIR spectroscopy. With refinement, these types of NIR
models may have the potential to provide grain handlers, millers, and
bakers a tool for identifying the cultural environment under which the
purchased grain was produced.

Despite considerable effort in research on the genetic basis of wheat
(Triticum aestivum L.) quality (often defined by dough properties), the
role of environment or seasonal variation has been much less studied
and, consequently, is less understood. Whereas wheat quality is
partially determined by genetics (hence the reliance on cultivar specifi-
cation in many wheat-producing countries), cultural environment and
its interaction with genotype can also determine quality (Busch et al
1969). In the United States, the environmental effect is often larger
than the genetic effect on wheat quality (Peterson et al 1992). Such
effects may include soil type, fertilizer level (especially N or S
[Paredez-Lopez et al 1985; MacRitchie and Gupta 1993; Daniel and
Triboi 2000; Luo et al 2000]), distribution of rainfall level (Faridi and
Finlay 1989), and late season frosts (Lookhart and Finney 1984). In
certain regions, elevated temperature during grain filling is possibly
the most important environmental determinant of grain quality (Ran-
dall and Moss 1990). It is believed that high temperatures during grain
filling, especially >35°C, alter the protein biosynthetic pathways
of grain, leading to protein compositional changes (Blumenthal et
al 1993). This temperature is particularly significant in light of wheat’s
general adaptation to moderate climates, such that the gradual increase
in worldwide temperature from global warming may cause severe
limitations for wheat cultivation (Ciaffi et al 1996). In a recent report
by Blumenthal et al (1998), four hypotheses were proposed to account
for changes in dough strength that are caused by heat stress: 1)
changes in the ratio of glutenin to gliadin; 2) alteration in the formation
of disulphide bonds between glutenin peptides, thus leading to a re-
duction of the size of the glutenin polymers; 3) the direct effects of
heat-shock proteins on dough strength; and 4) changes that heat-shock
proteins and chaperones impose on the folding and polymerization of
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polypeptides during polymer formation. In one of the very few studies
on the effects of development temperature on the biochemical quality
indices of North American wheats, Graybosch et al (1995) found that
SDS sedimentation volume, a protein quality indicator that is relatively
simple to measure, was an even more sensitive indicator of heat stress
than either gliadin or glutenin content. Similar findings were reported
for Australian wheat (Stone et al 1997). Although much simpler and
faster to perform than HPLC analyses, the SDS sedimentation test,
even if run in sets of parallel assays, can yield no more than 100
samples per laboratory day. A faster wheat quality test would allow
breeders to screen more samples for genetic and environmental sus-
ceptibility to heat and other stress conditions. On a broad array of 30
North American wheat genotypes, we demonstrated that NIR reflec-
tance equations could be developed for polymeric (considered to be
glutenin) protein content, monomeric (gliadin) protein content, SDS
sedimentation volume, and certain dough strength properties such as
the mixograph time to peak, maximum resistance, and width of the
mixing curve (Delwiche et al 1998). However, a problem that is
endemic to protein-related NIR models is an inadvertent correlation
between the modeled analyte and protein content itself, a constituent
that is routinely measured by NIR. Various methods in NIR analysis
have been used to uncouple the measurements of protein quality and
protein quantity. Most notable are those reported by Wesley et al
(1999, 2001) and Delwiche et al (1998). Whereas Wesley and
coworkers reconstruct a spectrum through a curve-fitting procedure of
summing component spectra (e.g., gliadin, glutenin) that are initially
derived from a least squares curve fitting algorithm, the procedure of
Delwiche is a statistical one in which partial correlation analysis is
used on model residuals to remove the contribution of protein content.
Because the relationship between heat stress and protein content is
equivocal (Graybosch et al 1995; Stone and Nicolas 1995), successful
NIR modeling will require the utilization of spectral absorbers that
directly relate to the biochemical precursors of dough quality
properties.

The objectives of the current research were to determine whether
NIR reflectance is sensitive to biochemical properties that are
influenced by the environment. Such properties are either directly
measured, as in the case of SDS sedimentation volume, or represented
by proxy, for example, by temperature- or humidity-dependent time
periods of plant growth development. The intercorrelation of these
propetties with protein content is addressed in a manner similar to our
previous research (Delwiche et al 1998).
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MATERIALS AND METHODS

Wheat. Wheat was grown during the 2000 season as part of the
Nebraska Winter Wheat Variety Tests program. Ten commercial
cultivars or advanced breeding lines of hard red winter wheat (Alli-
ance, Arapahoe, Cougar, Culver, Millennium, NE94654, NE95473,
NE95510, Wesley, and 2137) and of 10 hard white (Betty, Heyne,
Nuplains, NW97S154, NW97S182, NW97S218, NW97S278,
NW97S312, NW978343, and Trego) wheat were grown in field-
replicated plots at each of 10 counties (Box Butte, Cheyenne, Dawes,
Lincoln, Morrill, Perkins, Red Willow, Saunders, Scotts Bluff, and
Webster) in Nebraska. Fertilizer (N, P, K) was applied according to
standard practices at levels commensurate with soil fertilization needs.
Though the tests program includes sites that possess irrigation, all sites
chosen for the current study were dry land sites. At each location, or in
close proximity to, state-administered weather stations recorded
temperature, humidity, and precipitation values on an hourly basis
throughout the growing the season. These stations are part of the
Nebraska Automated Weather Data Network, maintained by the High
Plains Regional Climate Center at the University of Nebraska, Lin-
coln. Samples were planted in late September through late October,
with the exact planting date depending on the location. Likewise,
samples were harvested in June through July of the following year.
Dockage was removed from the samples before they were refrigerated
(=0°C) for 8-11 months until grinding.
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Fig. 1. PLS2 loadings for Factors 1 and 2, indicating relationship among
protein content, SDS sedimentation volume, and environmental parameters
plus four precipitation periods (preplant, fall, spring, and grain fill). Also
included are the loadings for selected wavelengths ascribed to protein
(2,180 nm), starch (2,100 nm), and oil (2,306 nm).

Weather data was processed to form four temperature-related
conditions, two humidity-related conditions, and four measures of
rainfall for the pre- and post-planting stages of crop development.
Temperature-related conditions pertained to the total number of
hours during grain fill in which 1) the temperature exceeded 30°C
[T > 30°C)], 2) the temperature exceeded 32°C [#(T > 32°C)],
the temperature exceeded 35°C [#(T > 35°C)], and the
temperature was less than 24°C [T < 24°C)]. Likewise, the total
number of hours during grain fill in which the relative humidity
was low [#(<40% rh)] or high [t(>80% rh)] was derived from the
hourly weather data. Rainfall accumulation for the June-August
preplanting period, the September-October planting period, the spring
growing period up until anthesis, and the grain fill period also was
determined.

Chemical Analysis. Samples from one field replicate at each of the
10 locations formed a set (n = 198) that was used in calibration
equation development. Likewise, samples from the other field repli-
cate constituted the test set (n = 200). Descriptive statistics of the
biochemical and weather properties for the two sets are summarized in
Table 1. Field samples were split successively to produce a 20-g
laboratory sample for grinding. A cylone grinder (Udy, Fort Collins,
CO) equipped with a 0.5-mm screen was used to produce test samples
for protein content, quality (SDS sedimentation), and NIR analyses.
SDS sedimentation volume determination was performed according to
Approved Method 56-70 (AACC 2000). Protein content (N x 5.7) was
determined using a combustion nitrogen analyzer (model FP-428,
Leco Corp., St. Joseph, MI) on duplicate 150-mg portions of the test
sample. Duplicate values were averaged. The error of the combustion
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Fig. 2. PLS2 loadings for Factors 2 and 3 as described in Fig. 1.

TABLEI
Summary of Properties of Wheat Samples

Calibration Set (n = 198)

Test Set (n = 200)

Constituent or Property? Range Mean + SD Range Mean + SD
Protein content, % 9.09-18.27 13.35+2.21 8.13-18.9 12.98 +2.26
SDSS, mL 10-35 21.2+5.2 9-33 204 £5.6
KT > 30°C), hr 110-203 147.9 + 30.4 110-203 148.0 = 30.6
KT > 32°C), hr 33-114 728 £23.9 33-114 72.8 +24.1
KT >35°C), hr 746 227 +10.9 746 228+ 11.0
KT < 24°C), hr 792-1099 965.5 +89.3 792-1099 965.7 + 88.9
#(<40% rh), hr 136-456 3413+ 1134 136-456 3410+ 1132
1(>80% rh), hr 165-518 364.2+£109.5 165-518 364.8 £ 109.1

2 SDSS, SDS sedimentation volume; #( ), time during grain fill period when temperature or humidity was less than or greater than expression contained within

the parentheses.
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procedure, as defined by the standard deviation of single determin-
ations of a check sample run in quadruplicate at the beginning and end
of each of 11 analysis days throughout a one-month period, was
0.109% protein. Similarly, the emror of the SDS sedimentation pro-
cedure, calculated from 30 measurements of a check sample during a
one-month period, was 2.2 mL.

NIR Acquisition and Modeling. Test samples were conditioned for
seven days in a constant humidity environment (33% rh) (Greenspan
1977) by placement in a desiccator that contained a saturated salt
(MgCl,) solution. The purpose of this conditioning was to minimize
spectral differences between samples caused solely by moisture. NIR
reflectance readings were collected at 2-nm increments over a wave-
length range of 1,100-2,498 nm using a commercial scanning
monochromator (model 6500 with spinning sample module, Foss-
NIRSystems, Silver Spring, MD). Two packs of a standard forage cell
(~7 g material/pack) were scanned (32 scans/spectrum) and averaged.
Samples from field reps 1 (n = 198) and 2 (n = 200) formed the
calibration and test sets, respectively. To reduce spectral variation
caused by sample-to-sample differences in particle size distribution or
packing density, a multiplicative scatter correction transformation, as
defined in Martens and Naes (1989), was applied to both sets, with the
calibration set mean spectrum as the reference. To accentuate absorp-
tion peaks, a Savitzky-Golay second-derivative transformation (deter-
mined by fitting a quadratic polynomial to a wavelength and its three
closest neighbors on each side, evaluating the polynomial at the central
wavelength, then repeating this task for all wavelengths) was applied
to each spectrum before partial least squares analysis.

Commercial software (Unscrambler v. 7.6, Corvallis, OR) was used
to develop partial least squares (PLS1 and PLS2) multivariate models.
As discussed in Martens and Naes (1989), PLS1 is a least squares
regression procedure that initially reduces the dimension of the wave-

TABLE II
Correlation Between Seiected Environmental Properties and Protein
Content or SDS Sedimentation Volume (SDSS)

Pearson Correlation Coefficient (r)P

Property® Protein Content SDSS

SDSS 0.903 e

«T > 30°C) 0.485 0.456

KT >32°C) 0.433 0.403

KT > 35°C) 0.445 0.436

T < 24°C) 0.000 (ns) —0.089 (ns)
#<40% rh) 0.249 0.210 (P =0.003)
t(>80% rh) -0.286 —0.268

a¢( ), time during grain fill period when temperature or humidity was less
than or greater than expression contained within the parentheses.

b All correlations are significant at P < 0.001 unless otherwise noted; ns, not
significant at P = 0.05.

length space from the number of wavelength points originally stored
(the X block, 700 points in the present case) to a handful (typically 1-
20) of orthogonal factors, while simultaneously incorporating the
influence of a dependent (Y block) variable. PLS2 modeling differs
from PLS1 in that more than one dependent variable is contained in
the Y block. During model development, all Y variables may simul-
taneously influence the compression of the X block. PLS2 modeling
is used in an explorative phase, whereby it becomes possible to
graphically reveal the relationship among X and Y variables. For this
study, the Y block consisted of 12 measurements: protein content, SDS
sedimentation volume, the four temperature-related time values, the
two humidity-related time values, and the four precipitation values.
Before PLS2 analysis, each of the 700 X block variables and each Y
block variable was scaled to equal variance by dividing by its standard
deviation (i.e., scaling weight = 1/S), as determined from all cali-
bration set samples.

PLS1 modeling (1,114-2,484 nm) was used to develop a calibration
equation for each of the Y block variables, excluding the precipitation
variables. One-sample-out cross validation was applied to determine
the optimal number of factors, based on an F-test (o = 0.25) using the
minimum root mean squared differences (RMSD) and an RMSD from
a model employing fewer factors. Each calibration model was subse-
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Fig. 3. PLS2 scores for Factors 1 and 2. Symbol size is linearly related to
protein content (smallest and largest sizes 9.09 and 18.27%, respectively).

TABLE III
Summary of PLS1 NIR Model Performances®

Cross Validation of Calibration Set (n = 198)

Test Set Statistics (n = 200)4

Constituent or Property® PLS Factors RMSD* Bias r Fpartial SEP RPD
Protein content, % 9 0.12 -0.01 0.999 ce 0.12 189
SDSS, mL 9 2.6 0.2 0.931 0.555 2.0 2.7
(T > 30°C), hr 11 6.2 -2.9 0.952 0.950 94 33
#(T > 32°C), hr 11 54 -22 0.938 0.937 8.3 2.9
HT > 35°C), hr 11 45 03 0.870 0.835 54 20
#T < 24°C), hr 11 24.5 5.0 0.949 0.949 29.1 3.1
t(<40% rh), hr 12 354 13.9 0.917 0.912 45.4 2.5
t(>80% rh), hr 12 32.0 -16.7 0.935 0.929 38.7 2.8

2 Model conditions: PLS1 on second-derivative (Savitzky-Golay, 7 point [14 nm] convolution window, second-order polynomial) of multiplicatively scatter-

corrected (first-order regression to mean of calibration set spectra) spectra.

b SDSS, SDS sedimentation volume; #( ), time during grain fill period when temperature or humidity was less than or greater than expression contained within

the parentheses.
¢ Root mean squared differences from a one-sample-out cross validation.

d Bias, mean of NIR model values minus mean of measured values; r, correlation coefficient of NIR-predicted and measured values; T'pariial, Partial correlation
coefficient adjusted for protein content; SEP, standard error of performance (standard deviation of residuals); RPD, standard deviation of measured values

divided by SEP.
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quently applied to the test set samples, whereupon model predictions
were compared with actual measured values. Such comparisons were
summarized by the standard error of performance (SEP), the corre-
lation coefficient (r), the bias, and the ratio of the standard deviation of
the measured values to the SEP, also known as the RPD (Williams and
Sobering 1993). Additionally, the contribution of the spectral sen-
sitivity to protein content in each of the other PLS1 models was statis-
tically removed through the application of partial correlation analysis,
as described in Fisher and van Belle (1993).

An in-house computer program was used to perform stepwise
multiple linear regression. This program is designed to search for the
single best second-derivative wavelength, starting with a derivative
gap size (half-width of the convolution interval) of 10 nm. The gap
size is then incremented by 2 nm, whereupon the search for the best
wavelength resumes. Gap size incrementing and searching continues
until a prescribed upper value (48 nm in the present research) of the
gap is reached. The single best term is selected to be the combination
of gap and wavelength that yields the highest coefficient of deter-
mination. Having selected the best single term, a second term is added
and the cycling of second derivative gap size trials for the new term

resumes. Upon finding the best second term, the user may then fine-
tune the selection of the first term by repeating the wavelength search
and gap cycling, while holding the second term constant. Continued
cycling between the holding of one term constant while searching for
the other term is repeated until both terms have stabilized to yield a
local optimum value in . Third and higher terms are selected in a
similar fashion, with each additional wavelength adding a significant
order of complexity to the fine-tuning procedure. In the present study,
up to four second-derivative terms were selected for each Y variable’s
regression equation.

RESULTS AND DISCUSSION

Loadings for the first three factors from the PLS2 analysis are
shown Figs. 1 (2 vs. 1) and 2 (3 vs. 2). All Y block variables are
plotted, in addition to specific wavelengths (X block), which from
prior knowledge (Osbome and Fearn 1986) are known to be associated
with absorption peaks for protein (2,180 nm), starch (2,100 nm), and
oil (2,306 nm). Each point represents the contribution of that
attribute (constituent or property in the case of a Y block variable,

TABLE IV
Summary of Multiple Linear Regression NIR Model Performances?®

Test Set Statistics (n = 200)4

Constituent or Property®  Wavelengths (nm) Gaps (nm) Coefficients® Bias r Poartial SEP RPD
Protein content, % 1506 34 —-663.2 0.00 0.998 ree 0.13 17.1
1606 38 5415
1688 46 -351.7
2170 22 -806.9
17.35
SDSS, mL 1660 22 -3122 0.1 0.940 0.616 1.9 29
2182 22 —5250,
2246 10 —4127
2274 12 -11,970
-27.2
KT >30°C), hr 1812 14 100200 -1.1 0.938 0.918 10.8 2.8
1832 10 -380300
1832 12 584600
1870 10 -39880
576
KT > 32°C), hr 1270 12 —414800 -1.0 0.900 0.876 10.6 23
1700 10 67900
1826 14 -59120
1832 14 156200
320
«T > 35°C), hr 1230 10 144900 -1.0 0.782 0.727 7.0 1.6
1544 12 —67610
1704 24 20740
2226 12 45470
~209
KT <24°C), hr 1206 10 -565400 9.6 0.850 0.851 46.8 1.9
1288 10 -1703000
1544 12 509200
1830 16 378400
-190
H<40% rh), hr 1542 10 649000 -3.2 0.709 0.686 80.6 14
1610 48 —-146700
2154 30 —243800
2444 40 140000
89.7
1(>80% rh), hr 1112 10 —-1120000 0.5 0.797 0.777 66.0 1.6
1270 12 —2736000
1544 12 —954400
1836 18 218300
986

@ Model conditions: four wavelengths of second-derivative of multiplicatively scatter-corrected (first-order regression to mean of calibration set spectra)

spectra.

b SDSS, SDS sedimentation volume; #( ), time during grain fill period when temperature or humidity was less than or greater than expression contained within

the parentheses.

¢ Constant term in the regression equation in bold type.

d Bias, mean of NIR model values minus mean of measured values; r, correlation coefficient of NIR-predicted and measured values; Tpartial» Partial correlation
coefficient adjusted for protein content; SEP, standard error of performance (standard deviation of residuals); RPD, standard deviation of measured values

divided by SEP.
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transformed spectral response at a given wavelength in the case of an
X block variable) to the first two PLS factors. Negative loading values
for Factor 1 occurred for protein content, SDS sedimentation volume,
and the three temperature-dependent time properties that quantify the
time above the threshold temperatures of 30, 32, and 35°C. A second-
derivative absorption peak at 2,180 nm (amide I and amide III
combination band) possessed a negative Factor 1 loading value of
approximately the same magnitude as those for protein and SDS
sedimentation volume. Conversely, the loading value for the peak at
2,100 nm (starch O-H and C-O combination) was approximately equal
in magnitude but of opposite sign to that at 2,180 nm, while the peak at
2,306 (oil CH, stretch-bend combination) possessed a very small
Factor 1 loading value. This is supportive of the complementary
behavior of starch and protein and a much smaller roll of lipids in the
ground meal. Of the four precipitation parameters, three possessed
Factor 1 loading values that were of opposite sign to the loading value
for protein content, while the magnitude of the fourth parameter’s
(Precip_preplant) loading value was close to zero. Analysis of the
PLS2 loadings revealed that more than half (53.5%) of the total
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variation of the 12 Y block values were explained by four factors. At
10 factors, this value rose to 81.8%.

The degree of correlation between the temperature- or humidity-
dependent time properties and protein content or SDS sedimentation
volume is summarized in Table II. The greatest correlation occurred
between SDS sedimentation volume and protein content, which
alludes to the difficulty in separating protein quality (SDS sedi-
mentation) from protein quantity. For the temperature- or humidity-
dependent time properties, the correlation coefficients, while signi-
ficant in most cases, was comparatively small, never exceeding 0.5 in
absolute magnitude.

The relationship between the PLS2 loading for Factor 1 and protein
content is readily seen in a plot of the sample scores for Factors 1
and 2 (Fig. 3). The size (diameter) of the symbol is linearly propor-
tional to the sample’s protein content, with the smallest and largest
sizes corresponding to 9.09 and 18.27% protein, respectively. Most
evident from this plot is that the Factor 1 scores increase with decrease
in protein content. This gradient is not apparent in the scores
associated with Factors 2 or higher.
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Fig. 4. Test set results for NIR PLS1 modeling of four constituents or conditions. A, protein content; B, SDS sedimentation volume, C, time during
grain fill period in which the temperature exceeded 32°C; and D, time during grain fill period in which the temperature was lower than 24°C. Model

results are summarized in Table III.
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Results of PLS1 models are summarized in Table III. Compared
with models in which no spectral pretreatment was performed (results
not shown), application of a second-derivative tended to improve
model performance by reducing the RMSD and the number of factors.
The number of factors ranged from 9 (for protein content and SDS
sedimentation volume) to 12 (for the humidity-related time condi-
tions). Aside from protein content, RPD values ranged from 2.0 for {T
> 35°C) (poorest model performance) to 3.3 for «T > 30°C) (best
model performance). It appears that NIR reflectance is sensitive to
conditions of protein quality (SDS sedimentation volume) and,
indirectly, to the environmental conditions that affect it; however, there
is no sharp demarcation between a temperature that promotes grain
development and one that potentially places the plant in a heat shock
condition. Recent research by S. B. Altenbach et al (unpublished) on
the influence of temperature, drought, or fertilization on the accum-
ulation of genetic transcripts for the gliadins and glutenin subunits in
hard red spring wheat (cv. Butte 86) has demonstrated that transcripts
have the tendency to appear earlier after anthesis and disappear sooner.
However, in contrast to the first hypothesis of Blumenthal et al (1998),
Altenbach’s team found no evidence to suggest that high temperature
(37°C) would result in a change in the proportion of gliadins to
glutenins.

The results of the present study suggest the ability of NIR reflec-
tance to monitor quality extends beyond its known ability to measure
protein quantity, as demonstrated by partial correlation coefficients
(rparia, Table IIT) that are statistically significant (P < 0.001). However,
this extension is least with SDS sedimentation volume, as seen by the
large decline in r value when the effect of protein content is removed
(i.e., r = 0931 and 0.555 for before and after removal, respectively).
The alternative approach of Wesley et al (1999, 2001) is to carefully
select nonoverlapping regions of a spectrum that are attributed to the
analytes of interest (e.g., gliadin, glutenin), whereupon the spectra of
these pure components are either directly measured (preferred) or
mathematically derived through a spectral deconvolution procedure
applied to well-characterized mixtures of these components. Spectral
reconstruction is then performed on the spectra of the unknown
samples to determine the proportions of gliadin and glutenin com-
ponent spectra, thus minimizing any intercorrelation to protein content.
Essentially, this curve-fitting procedure is an alternative to the statis-
tical procedure of the current study in which the contribution of protein
content is removed by partial correlation analysis. Although model
performance was reduced in comparison with partial least squares
modeling, the results of Wesley et al corroborate those of our earlier
study (Delwiche et al 1998), in that wheat protein quality, as defined
by the levels of gliadin and glutenin, can be monitored by NIR
reflectance. In the present study, environmental factors that influence
wheat quality are also shown to be indirectly measurable by NIR
reflectance. Plots of NIR-modeled vs. measured values of the test set
samples for protein content, SDS sedimentation volume, #T > 32°C),
and (T < 24°C) are shown in Fig. 4 (plots of the other attributes are
omitted for the reason of their similarity to the ones shown). In the
protein content and SDS sedimentation plots (Fig. 4A and B), values
are evenly clustered around the (45°) line of zero model error. The
dispersion of the values is greater for the temperature-dependent time
parameters (Fig. 4C and D), as shown by the circumstances in which
all NIR-predicted values corresponding to samples from a geo-
graphical location (forming a vertical cluster of points) were skewed to
one side of the 45° line.

Multiple linear regression modeling is summarized in Table IV. In
reference to Table IV, absorption bands are associated with wave-
lengths whose coefficients were negative. Although these models were
generally lower in performance than corresponding PLS1 models,
their relative simplicity (four terms as opposed to 912 factors) may
offset this detriment. In contrast to the PLS1 models, model
performances for the humidity-dependent time properties were
noticeably lower than for the temperature-dependent time properties.
Most of the wavelengths selected for the temperature-dependent time
property models were from the 1,200-1,900 nm region, a region
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predominated by first and second overtone vibrations of CH, OH, and
NH (Miller 2001). The second-derivative gap size associated with the
wavelength terms for these models typically had a range of 10-16 nm.
Some of these wavelengths are readily understandable in terms of
known absorbers (e.g., 2,170 nm for protein). Others are not easily
interpretable, although they should be useable, given the lack of
difference between the standard error of calibration (not shown) and
the prediction set’s standard error of performance.

CONCLUSIONS

Through partial least squares and multiple linear regression model-
ing, NIR reflectance on ground wheat has been shown to be sensitive
to the environmental conditions that prevailed during the period of
grain development. SDS sedimentation volume and the number of
hours during the period of grain fill in which temperature was above a
specified temperature (30, 32, and 35°C) or below 24°C were reason-
ably well (RPD range of 2.0-3.3) modeled by PLS1. Likewise, PLS1
models for the number of hours during grain fill at extreme humidity
conditions (<40% rh or >80% rh) were also reasonable (RPD = 2.5
and 2.8). With scatter correction and second-derivative spectral pre-
treatments, the number of PLS1 factors had a range of 9-12,
depending on the constituent or property modeled. Multiple linear
regression models consisting of four second-derivative terms produced
reasonable models for SDS sedimentation volume and two of the
temperature-dependent time parameters [#(T > 30°C) and T > 32°C)].
For both PLS and multiple linear regression models, success in
modeling extended beyond an intercorrelation between the modeled
property and protein content. With additional research, NIR spectro-
scopy has the potential for becoming a tool to be used by the wheat
industry for assessing the cultural environment under which the
purchased grain was produced.
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